Pathophysiological changes of the gastrointestinal tract in a rat model of sporadic Alzheimer's disease

Jan Homolak 1,2, Ana Babic Perhoc 1,2, Ana Knezovic 1,2, Jelena Osmanovic Barilar 1,2 and Melita Salkovic-Petrusic 1,2

1 Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia | 2 Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia

Aim:
The gastrointestinal tract and the brain-gut axis are involved in the etiopathogenesis and progression of Alzheimer’s disease (AD) by promoting metabolic dysfunction and inflammation. Failure of the gastrointestinal barrier accompanied by the breach of intestinal microorganisms, amyloid β, and proinflammatory mediators has been reported in animal models of familial AD, however, the role of the gastrointestinal tract has so far never been examined in non-transgenic models attempting to recapitulate pathophysiological processes driving neurodegeneration in ~95% of AD patients. The aim was to explore pathophysiological changes of the gastrointestinal tract and the brain-gut axis in a rat model of sporadic AD.

Methods:
Two separate cohorts of control and STZ-icv-treated rats (3mg/kg) were subjected to acute intracerebroventricular administration of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic polypeptide (GIP) inhibitor 1 month after the STZ-icv treatment. Chronic effects of STZ-icv, acute effects of incretin antagonists, and their interaction were explored by analyzing plasma lipid peroxidation (TBARS), superoxide dismutase (SOD) and nitric oxide redox peramplification (NRP), and duodenal and jeal TBARS, NRP, SOD, catalase activity and low molecular and protein sulfhydryls. The effects of STZ-icv on the gastrointestinal epithelial cell turnover were analyzed by morphometry and multiplex fluorescent signal amplification of caspase-3.

Results:
Redox homeostasis is shifted toward a pro-oxidative state in the STZ-icv duodenum, but not in the ileum in comparison with the controls. Oxidative stress in the STZ-icv duodenum is accompanied by the decreased villus-length/crypt depth ratio, epithelial cell flattening, and decreased expression and activation of epithelial caspase-3. Treatment-treatment interaction analysis indicates STZ-icv might affect the functioning of the brain-gut axis.

Conclusions:
Pathophysiological changes of the gastrointestinal tract in the STZ-icv rat model of AD appear in favor of redox dyshomoeostasis with a pro-oxidative shift and impaired epithelial cell turnover and apoptosis contributing to the dysfunctional gastrointestinal barrier that might promote systemic and central inflammation. Dysregulation of the brain-gut axis in the STZ-icv rats is characterized by resistance of gut to a central inhibition of GLP-1 and GIP receptors.

This work was funded by the Croatian Science Foundation (IP-2018-01-2838), Research was co-financed by the Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience (project “Experimental and clinical research of hypoxic-ischemic damage in perinatal and adult brain”, GA KKMI_1.0.0./000/087 funded by the European Union through the European Regional Development Fund).

homolakjan@gmail.com
GLP1 = Exendin-3(9-39)amide
GLP1 – [Pro3']-GIP

References: